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Wave-current interactions : an experimental and numerical 
study. Part 1. Linear waves 

By G. P. THOMAS? 
School of Mathematics, University of Bristol, Bristol BSS 1TW 

(Received 15 September 1980) 

The interaction between a regular wavetrain and an adverse current containing an 
arbitrary distribution of vorticity, in two dimensions, is studied using a linear theory. 
The model is used to predict the wavelength and the particle velocities under the 
waves and these are found to agree well with experimentally obtained data for a 
number of current profiles. Surprisingly accurate predictions, for the profiles con- 
sidered, were also obtained from an irrotational wave-current model in which the 
constant current has a value equal to the depth-averaged mean of the measured 
current profile. The changes in the wave amplitude as the current magnitude increases 
are predicted using an irrotational slowly varying model with good agreement being 
found between theory and experiment. 

~~ ~~ ~ ~ ~~~~~~ 

1. Introduction 
The interaction between a steady rotational current and a regular wavetrain in two 

dimensions has not been studied extensively for currents containing an arbitrary 
distribution of vorticity. The main difficulty in attempting an analytical treatment 
even for linear waves is that the governing equation (the Rayleigh equation of classi- 
cal stability theory) cannot be solved exactly for general wavenumbers and frequencies 
unless the vorticity is constant. Accordingly approximations concerning the nature 
of the wave regime or the current profile are necessary if analytical solutions are 
sought. The existing analytical work for both linear and finite-amplitude waves, 
together with the appropriate approximations, is well documented in the major review 
of Peregrine (1976) and the shorter reviews of Dalrymple (1973) and Thomas (1979a). 

The difficulties associated with analytical models have necessitated the develop- 
ment of numerical methods to study arbitrary shear flows. For linear waves, Fenton 
( 1973) used an initial-value formulation to study a +power-law current distribution 
but his method is capable of describing arbitrary shear flows with both periodic and 
decaying wave modes. Dalrymple (1973) developed a finite-difference model to study 
finite amplitude wave-current interactions for an arbitrary distribution of vorticity ; 
the method can also be used for linear waves but would be inefficient in this case. 

Both Dalrymple (1973) and Peregrine (1976) have stressed that there is an acute 
shortage of fundamental experimental work to test existing wave-current theories. 
This has generally been due to practical difficulties experienced in generating uniform 
laminar currents and regular waves simultaneously in a laboratory wave flume. An 
assessment of the problems encountered has been made by Shaw & Hutchinson (1978). 
Among the earliest experiments were those of Yu (1952) who studied the breaking of 
waves by an opposing current. Sarpkaya (1955, 1957) considered the stability of 
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progressive waves on a turbulent current in an attempt to evaluate the combined 
influence of viscous shear, turbulent mixing and a non-uniform current distribution. 
A novel feature of this work, from an experimental viewpoint, is the use of a wave- 
maker designed using a ‘Venetian blind’ principle. More recently, van Hoften & 
Karaki ( 1  976) have measured the interaction between waves and a turbulent current, 
showing that energy is extracted from the waves and this manifests itself by increased 
wave attenuation. 

For laminar currents, experiments are fraught with difficulties caused by the 
unwanted intrusion of turbulent influences. Evans (1955) conducted a series of 
experiments to test Taylor’s (1955) analysis of the hydraulic breakwater, obtaining 
reasonable agreement between theory and experiment. However, Evans notes that 
the generation of surface currents inevitably resulted in turbulence, the influence 
of which could not be quantified. Three-dimensional wave-current interactions were 
studied by Hughes & Stewart (1961), but while the interaction between the waves and 
a current with a horizontal shear was demonstrated well, problems were experienced 
with turbulent regions in the flow. In  a preliminary report on the present work, 
Thomas ( 1  979 b )  has shown good agreement between theory and experiment for linear 
waves on a current with arbitrary shear in two dimensions with great care taken to 
minimise the turbulent influences. Brevik & Aas (1 980) have obtained quantitatively 
good agreement between theory and experiment for waves on a shear flow, but were 
hindered by the degree of turbulence in the current. 

The analytical, numerical and experimental work described above has essentially 
been concerned with local flow behaviour. If the current varies over a length scale of 
several wavelengths then the corresponding modulations in the wave properties can 
be studied using a slowly varying approach. This enables the change in wave proper- 
ties, relative to a fixed reference point in the flow, to be obtained from a number of 
conservation relations. For general wave problems the technique is well summarized 
by Whitham (1  974), but for the special case of linear waves riding on an irrotational 
steady current in infinitely deep water the appropriate conservation relations were 
first given by 1,onguet-Higgins & Stewart (1961). However, little work exists for 
rotational currents and the theory cannot as yet be used to include arbitrary distribu- 
tions of vorticity; the only available relations are those of Jonsson, Brink-Kjaer & 
Thomas (1978) for flows containing constant vorticity, i.e. where the current varies 
linearly with depth. 

The present work is concerned with interaction between a regular linear wavetrain 
and a steady adverse shear current in two dimensions. An inviscid numerical model 
similar to that of Fenton (1973), but more suited to the handling of experimentally 
obtained data, is developed in $ 2 .  The experimental facility and procedure are 
described in $3 .  A comparison between theory and experiment is made in $ 4  and 
shows very good agreement for both the wavelengths and the velocity profiles. The 
predictions of a simple analytical model describing the irrot,ational interaction 
between a linear wavetrain and a constant current, having a value equal to the depth- 
averaged mean of the measured current, are also compared with the experimental 
data and surprisingly good agreement is found. I n  § 5 the irrotational slowly varying 
theory is used to predict the amplitude variations as the current becomes stronger; 
although the slowly varying theory is not strictly applicable i t  is shown to furnish 
good agreement with the measured wave amplitudes. 
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FIGURE 1. Definition of the co-ordinate system. 

2. Theory 
The co-ordinate system is shown in figure 1. The origin is taken to lie in the mean 

water level with the z axis pointing vertically upwards and the x axis in the direction 
of wave propagation. For the flows considered here there are no variations per- 
pendicular to  the Oxz plane, so changes in the current occur solely due to  upwelling or 
downwelling from below, and the waves do not undergo refraction. 

In  the linear theory the surface elevation ~ ( x ,  t )  is sinusoidal and can be written 

q(x,  t )  = a cos (ux - at), (2 .1)  
where a is the surface wave amplitude, K the wavenumber and w the absolute wave 
frequency. The total velocity field (uT(x,z , t ) ,  wT(x,z,t)) is represented as a super- 
position of a time-independent current term and wavelike first-order term 

(2.2) I U T ( X ,  Z, t )  = u(Z) f U(2)  COS ( K X  - d), 
wT(q z, t )  = w(z) sin (K;'c - wt) ,  

where U ( z )  corresponds to the current profile when no waves are present. 
From Peregrine (1976, equation (4.8)) the depth variation w ( z )  of the vertical 

wavelike velocity satisfies the Rayleigh equation of classical inviscid stability theory 

(2.3) 

in the flow region - h < z < 0. The boundary conditions to be satisfied by w(z)  are 

w(z)  = 0 on z = - h ,  ( 2 . 4 ~ )  

on z =  0,  (2.4 b)  

dw dU 
dz dz 

(W - K u ) 2 -  $- K(W - K U )  W - - gU2W = 0 

J w(z) = a(w - K U )  
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where the first surface boundary condition is the dispersion relation and the second 
is the kinematic free-surface condition. 

The quantities w ,  a and h, together with the function U ( z ) ,  can be regarded as 
known from either experimental specifications or measurements, so the system (2.3) 
and (2.4) needs to be solved for K and w ( z ) .  When these unknowns have been found 
the depth-varying component of the wavelike horizontal velocity u ( z )  can be obtained 
from the continuity equation 

1 d w  
u(2) = - - 

K d2 ’:, 

which is valid a t  all points in the fluid. 
The system defined by (2.3) and (2.4) cannot be solved analytically for general 

wavenumbcrs and frequencies unless d2U/dz2 = 0, corresponding to either a depth 
independent current or one which varies linearly with depth. Solutions for more 
general profiles are obtainable for stationary waves or if long- or short-wave approxi- 
mations are applied ; in each of these cases the existing analytic solutions are well 
documented by Peregrine (1976, 5 IVB). 

For the purposes of the present work it is necessary to resort to numerical solution 
of (2.3) and (2.4).  The first step is to formulate the problem as an initial-value one 
which is more amenable to numerical treatmdnt. Define y ,  $(y) and U,(y) as follows 

and substitute into (2 .3)  and (2 .4a ,  b ) .  The Rayleigh equation becomes 

with the initial conditions 

Q ( - 1 )  =-(-1) = o .  
dY 

( 2 . 8 ~ )  

The surface condition corresponding to the dispersion relation is 

This initial-value problem, with the condition (2.8 b ) ,  has been considered previously 
by Fenton (1973) who presented numerically-obtained solutions for the particular 
profile U,(y) = U, . (1 + y)$ .  Fenton’s method of solution regarded K h  and .U,/w as 
known parameters; $(y) was determined from the initial-value problem and then the 
surface condition yielded the non-dimensional phase velocity c/(gh)*, where c = W / K .  

I n  the present case the known quantities are w ,  h and U1(y) ,  so that  it is not convenient 
to specify ~h and K U , ( O ) / u  as predetermined fixed parameters ; consequently Fenton’s 
method is not directly applicable. It is simpler to regard the system (2 .7)  and ( 2 . 8 ~ )  
as one with an unknown function # ( y )  and an unknown quantity K ,  related by the 
surface condition (2 .8b) .  

Suppose the value K = K~ is fixed a priori. With this value of K equation (2.7),  
subject to the initial conditions (2 .8a) ,  is readily solved by use of a standard computer 
library Runge-Kutta routine and I?(K~) is then obtained from (2 .8b) .  If another value 



Wave-current interactions. Part 1 46 1 

K = K~ is chosen, F ( K ~ )  can be found similarly. By choosing K~ and K~ such that 
F ( K ~ ) .  F ( K ~ )  < 0 the solution to F ( K )  = 0 can be found iteratively using the modified 
method of false position for a value of K between K~ and K ~ .  When F ( K )  = 0 is satisfied 
then we have # ( y )  also, since this is obtained in the derivation of F ( K ) .  Care must be 
taken to ensure that if more than one zero exists then the one which is found is 
physically meaningful ; this depends on the choice of the initial guesses K~ and K ~ .  In  
practice the algorithm works well with the quantities K~ and K~ defined by 

w2 = gK1 tanh Klh, 

(w - K~U, , , )~  = glcZ tanh K Z h ,  

with U,,, being the maximum adverse current. The value K~ corresponds to the 
irrotational zero-current wavenumber for the wave frequency and water depth as 
used in the experiments; K~ is the analogous wavenumber for irrotational waves 
running against the constant adverse current U,,,. The choice of K~ and K~ was 
deduced from wavelength considerations which suggest K~ < K < K ~ .  

With #(y) and K known the numerical problem can be regarded as solved. The 
quantities to be determined are the wavelength h = 2 n / ~  and the wavelike velocity 
profiles u(z) and zu(z). In  terms of Q ( y )  and K ,  w(z)  is given by (2.6) and the second 
relation in (2.4b) as 

(2.10) 

with ~ ( z )  then determined from (2.5). 
The function U ( z )  (or equivalently U,(y)) is regarded as known, but is in practice 

known only as a set of (typically twenty) data points. Accordingly an analytical or 
numerical approximation to give U ( z )  from the basic data is required and this must be 
sufficiently accurate so as to provide good approximations to both d U l d z  and dZUldz2 
as well as to U ( z ) .  Cubic spline interpolation functions were used to fit the data for 
U ( z )  ; these satisfy the above accuracy requirements and have the additional advan- 
tage that a standard computer library procedure is usually available. 

3. The experimental facility and procedure 
( a )  Experimental facility 

The experimental programme was carried out in the Hydraulic Laboratory of the 
Department of Civil Engineering, University of Bristol. A longitudinal schematic 
section of the flume used for the experiments is shown in figure 2 ; this flume also has 
a wind generation facility, but this was not used and so is not illustrated. 

The flume has an overall length of approximately 27 m. The working section 
between the beach and the paddle has a uniform width of 0.72 m and a horizontal 
floor. Behind the beach the flume width is approximately twice that of the working 
section and is so designed to act as a stilling basin which minimizes fluctuations 
introduced by the pump when currents are used. 

Waves are generated by a hydraulically driven flat paddle board which can be 
controlled by either a regular signal generator or a pre-recorded random signal as 
required. This type of wavemaker has been shown by Ursell, Dean & Yu (1960) to be 
efficient over a wide range of wave frequencies, including those encountered in this 
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FIGURE 2. Schematic section of the wind-wave-current flume in the Hydraulics Laboratory, 
Department of Civil Engineering, University of Bristol. The drawing is not t o  scale and does not 
show the wind facility. 

study, in the generation of regular sinusoidal waves within the linear wave regime. 
Unwanted wave reflections are removed by a beach constructed of three thicknesses 
of ‘ Hairlock ’ bound in an ‘ expamet ’ sandwich. The beach is 5.5 m in length and of 
adjustable slope, usually chosen to provide maximum beach length (and efficiency) 
a t  the required water depth; the lowest portion of the beach was contoured paraboli- 
cally in the manner shown in figure 2. Following Ursell, Dean & Yu (1960, equation 
(7 .1 ) ) ,  the beach reflection coefficient is defined as the ratio of the reflected wave 
height to  the incident wave height; for the wave conditions in the experiments 
described here the reflection coefficient, for waves only, was found to be less than 2 %. 
This value was determined from careful measurements of the variation in wave 
height along the length of the flume, with the louvres closed and the expamet grids 
removed. 

The current motion is driven by a pump with an adjustable motor and provides a 
re-circulatory flow in which the current in the flume is adverse to the direction of 
wave propagation. Water is removed from the flume over a distance of approximately 
2.5 m in front of the paddle and travels, via a return duct under the main floor of the 
flume, to be pumped into the stilling basin behind the beach. A feature of the facility 
is that for experiments which do not require currents, the louvre blades can be 
closed to provide a flume with a uniformly horizontal floor. There are five identical 
louvre blades and each can rotate about a horizontal axis in the flume floor; when 
open the blades are vertical and parallel to the sides of the flume, thus presenting 
very little flow obstruction. 

The theory requires the current to be laminar and this necessitates maintaining 
the level of turbulence in the current within acceptable bounds. The strategy is to 
diffuse as much of the large scale turbulence as possible in the current; before pre- 
cautions were taken deviations from the mean current velocity were of the order of 
40 yo of the mean. Small-scale high-frequency turbulence is not an insurmountable 
problem since its influence can be removed by averaging over a sufficiently large 
number of wave cycles. 
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The main generative sources of large-scale turbulence are readily identifiable : the 
current is turned through 180’ a t  the bell mouth from the pump into the stilling basin 
and then flows through both a convergent channel and a thick beach before moving 
down into the working section of the flume. Two principal steps were taken to reduce 
this large-scale turbulence. Firstly, two substantial ‘ sandwiches ’ of fine stainless 
swarf (lathe turnings), of thickness 0.6 m and 1 m, were placed directly after the pump 
bell mouth and in the convergent channel respectively; these are shown in figure 2 .  
Tests conducted with the beach removed showed that these devices provided a 
particularly effective mechanism for dispersing the large-scale turbulence. Secondly, 
three ‘ expamet ’ grids were placed immediately in front of the beach a t  roughly 0.3 m 
intervals to reduce the turbulence introduced by streaming through the beach ; the 
grid size was chosen to be sufficiently large (having an open area of 60%) for the 
wave motions not to experience appreciable reflection when the current flowed and 
fortunately this proved to be so in practice. The introduction of these two types of 
current filter reduced the scale of the turbulence to an acceptable level; typical 
deviations at  the measuring point were less than 4 yo of the mean velocity and hence 
were considered ‘removable ’ by an averaging process. 

The wave and current velocities are measured using laser-Doppler anemometry 
(LDA). The laser is a Spectra-Physics 124A( 15mw) and the transmitting, receiving 
and processing optical units are contained in a modified Mark 1 DISA system. The 
manufacturer’s accuracy specification for this LDA system is an error of less than 1 % 
of the true value. Wave heights and profiles are measured using resistance type 
gauges built to the design developed at the Hydraulics Research Station, Walling- 
ford. The oscillatory LDA and wave probe output is analysed on-line by a S.E. Labs 
Model SM2002A Transfer Function Analyser, which is also used t o  generate the 
regular sinusoidal waves. This resolves the input signal into a nine-harmonic Fourier 
series, averaged over an arbitrarily prescribed number of wave cycles. The non- 
oscillatory LDA output, corresponding to the mean current, is evaluated using an 
averaging microprocessor voltmeter. 

(6 ) Experimental procedure 

The following procedure was adopted in each of the experiments. 
The pump motor was set to the required speed and the water depth adjusted to 

give the desired value when measured immediately in front of the paddle (this is 
essentially a region of still water when waves are not generated). 

The horizontal current profile U ( z )  was measured at a number of elevations 
(typically twenty), spaced uniformly over the greater part of the water depth. It was 
not possible with the experimental rig used to  measure within 45 mm of the bottom 
of the flume, so no data points were obtained from this region. Additionally a greater 
density of points was used near the air-water interface since this was where the 
strongest shear generally occurred. At each measuring point the mean horizontal 
current was found by averaging the LDA output signal over a sufficiently long period, 
typically of the order of 120 secs. The maximum deviation from the mean was also 
noted to ensure that the turbulence fluctuations remained within the bounds described 
earlier. 

A steady wave train was then generated at a prescribed frequency and of an 
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amplitude controlled by the stroke of the sinusoidal paddle motion. The first harmonic 
component of the horizontal velocity was measured a t  a number of points (usually 
twelve), with the signal averaged over 100 wave cycles; for a wave frequency of 
0.8 Hz this is approximately the same time as used in obtaining the mean current. 
The averaged first harmonic component of the surface elevation was determined in a 
similar manner. Higher harmonics were obtained for both the velocity and surface 
elevation measurements to ascertain that the motion remained within the linear wave 
regime. It was not felt necessary t o  measure both the vertical and horizontal com- 
ponents of the oscillatory velocity a t  each measuring point, since both are predicted 
by the numerical model; initial tests showed that the model predicted each to  the 
same degree of accuracy and the continuity equation (2.5) provided excellent agree- 
ment between the two velocity components. 

Finally the wavelength was determined by placing two wave probes so that their 
output signals were exactly in phase, this occurs whenever the probes are an integral 
number of wavelengths apart and the first such position, i.e. one wavelength apart, 
was sought. 

From each experiment the frequency w ,  water depth h, wave amplitude a and 
fundamental current distribution U ( z )  are either specified or measured and then used 
as input to  the numerical model. The theoretical velocity profiles obtained can then 
be compared with those measured in the experiment. 

4. Results 
In  the series of experiments described here the water depth immediately in front 

of the paddle was maintained at 0.57 m, the wave frequency was specified to  be 0.8 Hz 
and the same paddle displacement was always used to  generate the waves. Data was 
obtained for a number of current profiles, and the corresponding wave-current inter- 
action, with the depth-averaged current velocity lying between zero and approxi- 
mately 0.25 m s-l. The upper limit on the adverse current velocity was governed by 
the capacity of the pump motor and not by physical considerations - it is perhaps 
worth noting that under this set of conditions, the irrotational linear wave theory 
predicts wave reflection when the adverse current is of the order of 0.45 m s-I, which 
is well outside the present range of interest. 

Although the water depth immediately in front of the paddle was kept constant 
throughout the series of experiments, the mean water depth in the interaction region 
varied slightly with different currents due t o  higher-order effects (usually referred to 
as ‘ set-up ’ or ‘ set-down ’). These have been determined to second order by Jonsson 
et al. (1978, equation (37)) for the case of a linear current profile and can essentially 
be regarded as the sum of second order wavelike terms and the classical hydraulic 
velocity head. The wavelike terms do not appear in the linear theory used here since 
they are of second order, but it remains to confirm that the hydraulic head can be 
justifiably ignored. The hydraulic velocity head increases in magnitude as the current 
increases and for the strongest current considered Jonsson’s exact expression yielded 
a value of 2 mm, which is N 0.35 yo variation in the depth and can be regarded as a 
genuine second-order quantity. 

The measured velocities and corresponding theoretical predictions are presented 
graphically in figures 3-7 as a sequence in which the current is an  increasing quantity. 



Wave-current interactions. Part 1 465 

0 

-0.1 

-0.2 

-0.3 

-0.4 
i 

-0.5 

-0.6 

0 10 20 30 40 50 60 

u(z)  

FIGURE 3. Comparison between theory and experiment for the amplitude u ( z )  (mm s-l) of the 
wavelike horizontal particle velocity under a regular linear wavetrain in otherwise still water. 
The physical properties of the wavetrain are given in table 1. - , the predicted profile; x , 
experimental data. 

In  each of the figures the experimental data is shown by a cross and a predicted 
profile by a solid line; the mean value of the current, when appropriate, is illustrated 
by a line composed of alternate dashes and dots. 

Figure 3 corresponds to the case where there is zero current, so the predicted profile 
is given by the usual irrotational linear wave theory for waves propagating through 
otherwise still water. This special case is included as it provides two fundamental 
reference levels. Firstly, i t  can be used to relate any of the quantities resulting from 
the wave-current interaction, such as wavelength or wave velocity, to its value when 
no current is present. Secondly, it illustrates the case in which experimental data 
could be expected to furnish the best agreement with theory and hence can be used 
to provide a reference level for the accuracy of the measuring system. 

Good agreement is generally seen to exist between the measured and predicted 
velocities. The mean discrepancy between the theoretical curves and the measured 
velocity data is of the order of 4 yo, corresponding to an error of 1.6 mm SKI when 
the velocity is 40 mm s-l. 

The agreement is poorest in two readily identifiable regions : near to  the surface for 
the weakest current (figure 4) and close to  the bed for the stronger currents (figures 6 
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FIGURE 4. Comparison between theory and experiment for the amplitude u ( z )  of the wavelike 
horizontal particle velocity under a regular linear wavetrain interacting with the horizontal 
current U ( z ) .  All velocities are measured in mm s-l and the physical properties of the system are 
given in table 1. -, the predicted profile; x , experimental data; - . -, the value of the depth- 
averaged current 0 = 59.7 mm s-1; . . . , the predicted profile using the irrotational mean-flow 
model. 

and 7 ) .  From figure 4 the surface discrepancy is seen to  be associated with a particu- 
larly strong shearing of the water surface layers. In  the latt’er case the source of 
trouble is not the shear layer a t  the bed but is instead due to a jet of water which 
streams through a weak point in the beach construction and becomes more pro- 
nounced as the flow becomes faster; the hypothesis of the jet being generated a t  the 
beach was confirmed by measurement of current profiles with the beach removed. 
Such a region of flow could be associated with an instability mechanism (since the 
profile contains an inflection point) but this was not observed, possibly because the 
length scale over which the instability could manifest itself was not sufficiently long, 
but more likely due to small-scale turbulent diffusive processes preventing the growth 
of such an instability. 

This maximum disparity occurs in regions where the rate of shear of U ( z )  and 
d U / d z  is most rapid and consequently where the current becomes difficult to  model 
numerically. Although the spline fits the experimental data well, its first derivative 
between any two adjacent knots is quadratic and hence its second derivative is 
linear in z .  Thus the input to the numerical model is in some sense a smoothed form 
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FIGURE 5 .  As for figure 4, with 0 = 116.2 mm s-l. 

of the data and least accurate in regions of greatest shear, which is then reflected in 
the predicted velocity profiles. The situation could be improved by the insertion of 
more data points and more knots in the spline in the regions of greatest shear but this 
would require considerably more experimental time and a detailed a priori knowledge 
of the current profile. 

The influence of the current on the wavelength and wave amplitude is shown in 
table 1. The strength of the interaction is illustrated by the fact that  the measured 
wavelength A, at  the maximum current velocity considered (figure 7 )  has decreased 
by approximately 19 yo of its value when no current is present. The corresponding 
measured increase in wave amplitude is 31% and the magnitude of the maximum 
predicted horizontal wavelike component, from figures 3 and 7 ,  increases by 37 %. 

The agreement between the predicted wavelength A,, and the measured wavelength 
A,, is seen to be generally very good with the poorest agreement ironically being for the 
lowest currents, where it would be expected to be best. For the data in table 1 the 
maximum value of I A, - A,,\ is < 0-8 % x A, with the mean error being < 0.5 yo x A,. 

A further quantity presented in table I is A,. This is the wavelength of an irro- 
tational linear wavetrain interacting with the depth-independent (adverse) current 
and is obtained from the usual irrotational dispersion relation 
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FIGURE 6. As for figure 4, with 0 = 159.8 mm s-l. 

with U (the depth averaged mean current) determined from the cubic spline repre- 
sentation of the current data. Surprisingly good agreement is seen to exist between 
A, and A E ,  with the errors between the two being of the same order of magnitude as 
between A, and A,. 

The close proximity enjoyed by A,,, A, and A-, for the current profiles considered 
here shows how remarkably good irrotational wave theory can be for wavelength 
prediction, even in the presence of pronounced, though narrow, shear layers in the 
current near the flume bottom and the free surface. Of obvious interest is how well 
the irrotational mean current model can predict the wavelike velocity components. 

The appropriate form for the horizontal velocity component U ( Z )  in the irrotational 
model is 

ugh. cosh K ( Z  + h)  
U ( Z )  = - 

w - K g  c o s h ~ h  

with K determined from (4.1). This can easily be used to  predict the measured velocity 
profiles presented in figures 4-7. Agreement between (4.2) and the experimental data 
is generally very good for each of the current profiles over almost all of the water 
depth; this can be seen from figures 4-7, where the dotted line indicates the prediction 
of (4.2) and appears only where it differs noticeably from the prediction of the numeri- 
cal model. The main discrepancies are close to the surface in figures 5 and 7, and in 
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Figure D A, A m  4 7  am 

3 0 2.246 2.261 2.246 9.18 
4 59.7 2.127 2.143 2.125 9-96 
5 116.2 2.004 2.007 2.005 10.61 
6 159.8 1.902 1.896 1.907 11.63 
7 203.0 1.816 1.820 1.806 12.02 

TABLE 1.  The physical properties of the wave-current interactions illustrated in figures 3-7. 
The quantity 0, measured in mm s-l, is the depth-averaged adverse current velocity obtained 
from the cubic spline interpolation to the current data. The wavelengths A, and A, (measured in 
metres) are the predicted and measured values of the wavelengths; &j is the wavelength predic- 
tion from equation (4.1). Wave amplitudes are denoted by a, and are measured in millimetres. 

the region of the bottom jet in figures 6 and 7. These occur where the irrotational 
model fails to include the influence of the shear. However, for the results shown in 
figure 4 the irrotational model is more accurate than the numerical model close to  the 
water surface, largely because the irrotational mean current formulation is relatively 
insensitive to the nearest current measurement to the surface. 

I n  the experimental results presented above, the frequency, water depth and 
paddle displacement are all fixed parameters. This choice enables the experimental 
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data to be used in the next section to study the slowly-varying properties of the flow. 
Similar experiment,s were also carried out with different values for these parameters 
and a comparable degree of agreement between theory and experiment to that shown 
above was obtained, provided that the waves remained within the linear regime. 

5. Slowly varying properties of the flow 
The results presented in table I show the measured amplitude variation with the 

current, but the linear theory used to predict the local wave properties does not 
provide an immediate mechanism for predicting the amplitude variation. Accordingly 
an alternative approach is required to relate the amplitude variation to the appro- 
priate change in the current properties. 

The approach usually adopted to consider such amplitude variations is to assume 
that the flow properties are slowly varying, i.e. that, any changes in the local properties 
of a steady wavetrain occur over a length scale of several wavelengths. In  the present 
case t,his is equivalent to  the assumption that variations in the current, which generate 
the variations in the local wave properties, only occur over the prescribed scale of 
several wavelengths and a further consequence of this is that there is no reflection 
(partial or total) of the incident wavetrain due to the horizontal current gradient. 
The theory for irrotational wave-current interactions of this type was first given by 
Longuet-Higgins & Stewart (1961) for waves in deep water and can be derived for 
water of arbitrary depth using the Whitham (1974) theory. For rotational currents 
little work exists; the most applicable is that of Jonsson et al. (1978), who consider 
the case of a current, containing constant vorticity. 

The currents used in the experimental programme were essentially constant over 
the main part of the flume between the expamet grids and the drainage louvres and 
could justifiably be regarded as locally constant in the measuring region. Thus the 
current changes over the length of the louvres. This distance is approximately 2.5 m 
and this must be compared with an incident wavelength of between 1-81 m and 
2.61 m. Strictly speaking this change in the current velocity over a scale of O ( h )  
is too short a length scale for valid implementation of the slowly varying theory, 
but in the absence of a more suitable theory a slowly varying regime is assumed to 
exist. 

From Longuet-Higgins & Stewart ( 1  961) the conservation relation governing the 
amplitude variation of a linear wavetrain on an irrotational current U in infinitely 
deep water is 

(5.1) 

where c is the phase velocity given by c = W / K .  The current variations are assumed 
to be generated by upwelling (or downwelling). 

This relationship can also be extended to water of finite depth and is presented here 
in its most general form 

4a2(c - U ) ( c  + U )  = constant, 

cg = constant, 
E 

W - K U  

where E = $pga2 is the wave energy density and cg = d w / K  is the group velocity. The 
expression (5.2) is often referred to as the conservation of wave action, following 
Bretherton & Garrett (1968). 
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For a particular rotational flow, Jonsson et al. (1978) have shown that if the current 
profile varies linearly with depth the analogue of (5 .2 )  is 

- cg = constant, (5.3) 
E 

W - K U  

where E still represents the wave energy denshy but is now a complicated function 
of the wave amplitude, vorticity and current properties. The quantity a is the depth- 
averaged current velocity as used previously in § 4. 

For general rotational currents, there is a t  present no analogue of (5.3). Accordingly, 
the choice is between (5.2) and (5.3) as to which would better satisfy the required 
purpose. Study of the current profiles in figures 3-7 indicates the currents are better 
described by a constant depth-independent value than by a linear law. This suggests 
using the following form of ( 5 . 2 ) ,  

a2 
- cg = constant. (5.4) 

W - K U  

The corresponding changes in the wavenumber or wavelength can also be predicted 
in slowly varying regimes and the appropriate conservation relation for linear waves 
is simply the local dispersion relation. Since the constant current is used to predict 
the ampIitude variations, to be consistent the same current parameter must be used 
to study the wavelength variations. The dispersion relation has been given previously 
as equation (4.1), 

(w - K 8 ) 2  - gK tanh Kh = 0, (5 .5 )  

and the values of h given by this equation were indicated in $4 by Ac. The error 
between Ae and A, (the measured value) has been discussed previously and errors of 
similar magnitude are intuitively expected between the measured and predicted 
values of the wave amplitudes. 

To use (5.4) and ( 5 . 5 ) ,  it is necessary to specify a reference level to  define the 
constant in (5.4) and to enable a non-dimensionalization of all quantities to be made. 
The natural choice of reference is to the values which are found when there is zero 
current. This introduces the quantities a,  and A,, corresponding to the amplitude and 
wavelength respectively when no current flows; a,  takes the measured value given 
for = 0 in table 1 and A,  takes the corresponding predicted value (which must be 
used rather than the measured value since ( 5 . 5 )  must be satisfied). All of the required 
data is available from table I .  This is presented in a more suitable form in table 2 
and is shown graphically in figure 8. 

Comparison of the measured and predicted wave amplitudes and wavelengths in 
table 2 and figure 8 shows good agreement between the two sets of data. The agree- 
ment between the measured and predicted values of the wave amplitude is generally 
better than 2 % of the predicted value; the corresponding figure for the wavelength 
data is 1 yo. This does not suggest that the wavelength prediction is better than the 
amplitude prediction since the experimental error must be taken into account, i.e. 
the amplitude data is non-dimensionalized with respect to the measured value a. and 
must contain an element of experimental error, which is then inherent in the ./ao 
predictions. The same problem does not occur in the wavelength predictions, since A,  
is a theoretical value and is not dependent upon experimental error. 
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Measured Predicted Measured Predicted 
Figure u(mm s-l) a/a,  a/a,  A/AO A/AO 

3 0 1 1 1.007 1 
4 59.7 1.085 1.067 0.954 0.946 
5 116.2 1-156 1.156 0.894 0.893 
6 159.8 1.267 1.242 0.844 0.849 
7 203.0 1.309 1.315 0.810 0.804 

TABLE 2. The measured and predicted values of the non-dimensional wave amplitude and wave- 
length. The experimental data is taken from table 1 and the predicted values derived using 
equations (5.4) and (5.5). In the notation of table 1, a, and A,  correspond to the values of a, and 
Acwhen 0 = 0; the measured values ./ao and h/A, correspond to a,/a, and A,/A, respectively. 

0.7 I I I I I I I 1 I I 
0 20 40 60 80 100 120 140 160 180 200 220 

i7 
FIGURE 8. The predicted and experimentally obtained values of the non-dimensional wave 
amplitude a/uo and wavelength A / A ,  plotted against the mean current 0 (measured in mm s-l). 
The data is given in table 2. -, the theoretical curve; x , experimentally measured wavelengths; 
+ , experimentally measured wave amplitudes. 

The errors between theory and experiment take two forms. The first is the experi- 
mental error mentioned above and the second is the error introduced by approxi- 
mating the current and the wave properties by their mean irrotational equivalents and 
assuming that the flow properties are slowly varying. The experimental error can be 
quantified to be accurate within 1 % of the measured quantity; the remaining errors 
must be due to the mean flow and slowly-varying approximations. Taking this into 
consideration the accuracy obtained in table 2 and figure 8 using the mean flow and 
slowly varying approximation is surprisingly good. 
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6. Conclusions 
Good agreement has been shown to exist between the predictions of a numerical 

model and experimentally measured values of the wavelength and velocity profiles 
associated with a linear wavetrain interacting with a steady current containing an 
arbitrary distribution of vorticity. Surprisingly good agreement has also been found 
between the measured wavelengths and those predicted by the interaction between a 
linear irrotational wavetrain and an adverse depth-independent current having a 
value equal to the mean of the measured current profile. The success of the mean flow 
irrotational model is essentially due to the character of the current profiles considered: 
although the profiles contained strong narrow shear layers near the flume bed and the 
free surface they were approximately uniform (and hence irrotational) over the 
remainder of the depth. An approximate estimate indicates that the same is true for 
the numerical data of Dalrymple (1977) for the condition using a +-power-law current, 
which resembles the profiles of this study. However, Dalrymple’s wave is essentially 
a long wave of finite amplitude, whereas the waves presented here are linear and 
nearly deepwater in character.? 

The amplitude variation as a function of the mean depth-averaged current was 
predicted using a slowly varying approach and a comparison then made between 
theory and experiment. The degree of agreement was surprisingly good, especially 
as the theoretical formula required two approximations in its derivation. The first of 
these replaced the rotational current by its irrotational mean value and assumed the 
flow to be irrotational ; the accuracy of this approximation was already known from 
previous velocity and wavelength measurements. Secondly, a slowly varying regime 
was assumed to exist, i.e. the changes in the current properties (which generate the 
variations in the wave properties) occur over a scale of several wavelengths. I n  
practice, this was not so since changes in the magnitude of the current occurred 
over a length scale of one wavelength and thus the slowly varying theory was not 
strictly valid, but still described the amplitude variations very well. 

The results of this study suggest two particular topics of research in the field of 
regular wave-steady current interactions. The first is to consider in more detail the 
importance of the shear in the current for a linear wave regime. It is expected that 
the numerical model would still describe the flow very well for currents which vary 
strongly with depth, whereas the irrotational mean current model would not, owing 
to the increased importance of the shear. Furthermore the amplitude variations, 
considered theoretically in a slowly varying regime, would not be expected to  be well 
predicted by the model used here but would probably contain a strong dependence 
upon the shear and may not be amenable to a simple analytic treatment. The second 
topic is to extend the existing work on linear waves to include finite-amplitude 
effects, including study of both the local velocity fields and the slowly varying proper- 
ties of the flow. 

During the period of this research the author was a member of the Department of 
Civil Engineering, University of Bristol and accordingly wishes to express his grati- 
tude to those members of the Department who offered useful guidance and advice, 

t This important analogy between Dalrymple’s numerical work and the present experimental 
study was demonstrated by a referee, to whom the author is grateful. 



474 G .  P. Thomas 

notably to Dr T. L. Shaw (then a member of staff) and to Mr C. L. Wishart and 
Mr E. Smith of the Hydraulics Laboratory. The work was financed by the Marine 
Technology Directorate of the Science Research Councii and this too is gratefully 
acknowledged. 
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